The DNA binding and pairing preferences of the archaeal RadA protein demonstrate a universal characteristic of DNA strand exchange proteins.

نویسندگان

  • E M Seitz
  • S C Kowalczykowski
چکیده

The archaeal RadA protein is a homologue of the Escherichia coli RecA and Saccharomyces cerevisiae Rad51 proteins and possesses the same biochemical activities. Here, using in vitro selection, we show that the Sulfolobus solfataricus RadA protein displays the same preference as its homologues for binding to DNA sequences that are rich in G residues, and under-represented in A and C residues. The RadA protein also displays enhanced pairing activity with these in vitro-selected sequences. These parallels between the archaeal, eukaryal and bacterial proteins further extend the universal characteristics of DNA strand exchange proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and Functional Analyses of Five Conserved Positively Charged Residues in the L1 and N-Terminal DNA Binding Motifs of Archaeal RadA Protein

RecA family proteins engage in an ATP-dependent DNA strand exchange reaction that includes a ssDNA nucleoprotein helical filament and a homologous dsDNA sequence. In spite of more than 20 years of efforts, the molecular mechanism of homology pairing and strand exchange is still not fully understood. Here we report a crystal structure of Sulfolobus solfataricus RadA overwound right-handed filame...

متن کامل

RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange.

With the discovery that the Saccharomyces cerevisiae Rad51 protein is both structurally and functionally similar to the Escherichia coli RecA protein, the RecA paradigm for homologous recombination was extended to the Eucarya. The ubiquitous presence of RecA and Rad51 protein homologs raises the question of whether this archetypal protein exists within the third domain of life, the Archaea. Her...

متن کامل

Three New Structures of Left-Handed RadA Helical Filaments: Structural Flexibility of N-Terminal Domain Is Critical for Recombinase Activity

RecA family proteins, including bacterial RecA, archaeal RadA, and eukaryotic Dmc1 and Rad51, mediate homologous recombination, a reaction essential for maintaining genome integrity. In the presence of ATP, these proteins bind a single-strand DNA to form a right-handed nucleoprotein filament, which catalyzes pairing and strand exchange with a homologous double-stranded DNA (dsDNA), by as-yet un...

متن کامل

Domain analysis of an archaeal RadA protein for the strand exchange activity.

Archaeal RadA, like eukaryotic Rad51 and bacterial RecA, promotes strand exchange between DNA strands with homologous sequences in vitro and is believed to participate in the homologous recombination in cells. The amino acid sequences of the archaeal RadA proteins are more similar to the eukaryotic Rad51s rather than the bacterial RecAs, and the N-terminal region containing domain I is conserve...

متن کامل

Rapid purification of HU protein from Halobacillus karajensis

The histone-like protein HU is the most-abundant DNA-binding protein in bacteria. The HU protein non-specifically binds and bends DNA as a hetero- or homodimer, and can participate in DNA supercoiling and DNA condensation. It also takes part in DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows a certain degree of specificity to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular microbiology

دوره 37 3  شماره 

صفحات  -

تاریخ انتشار 2000